DOI: 10.12086/oee.2022.210421

SAR 实时成像光学处理器 光机系统设计

赵洪强^{1,2},张星祥^{1*},王 夺¹,毕国玲¹,付天骄¹ ¹中国科学院长春光学精密机械与物理研究所,吉林长春 130033; ²中国科学院大学,北京 100049

摘要:为了进一步提高合成孔径雷达 (synthetic aperture radar, SAR) 面对海量回波数据的实时成像处理能力,基于 4f 光学结构对 SAR 实时成像光学处理器进行了光机系统设计和分析。首先,设计了适用于滤波算法的入瞳直径 21 mm、视场角 7°、焦距 172 mm 的傅里叶变换透镜,并对 4f 光学系统采取紧凑化设计。然后,利用集成优化方法 优化了 4f 光机结构中的柔性镜座,并对整体结构进行了模块化设计和分析。分析结果表明: 4f 光学系统成像质量趋 于衍射极限,傅里叶变换透镜的 MTF 在 55 lp/mm 处优于 0.57,4f 光机系统在常温 1g 重力工况下透镜面形 RMS 值 小于λ/50,整体结构基频大于 100 Hz。4f 光学处理器整体尺寸为 405 mm×145 mm×92 mm,质量约为 2.94 kg,其 体积、质量分别仅是同等 SAR 数据处理水平的斜平面光学处理器的 30%、48%。通过数据的模拟仿真,表明系统设 计满足星载或机载的实时成像使用需求。

赵洪强,张星祥,王夺,等. SAR 实时成像光学处理器光机系统设计 [J]. 光电工程,2022,49(9):210421 Zhao H Q, Zhang X X, Wang D, et al. Optical-mechanical system design of SAR real-time imaging optical processor[J]. *Opto-Electron Eng*, 2022,49(9):210421

Optical-mechanical system design of SAR real-time imaging optical processor

Zhao Hongqiang^{1,2}, Zhang Xingxiang^{1*}, Wang Duo¹, Bi Guoling¹, Fu Tianjiao¹

¹Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,

Changchun, Jilin 130033, China;

² University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: In order to further improve the real-time imaging processing ability of synthetic aperture radar (SAR) in the face of massive echo data, the optical and mechanical system of SAR real-time imaging optical processor is designed and analyzed based on 4f optical structure. Firstly, a Fourier transform lens with an entrance pupil diameter of 21 mm, a field angle of 7°, and a focal length of 172 mm is designed for the filtering algorithm, and a compact design is adopted for the 4f optical system. Then, the flexible mirror base in 4f optical mechanical structure is optimized by using the integrated optimization method, and the overall structure is modularized designed and analyzed. The results show that the imaging quality of 4f optical system tends to the diffraction limit, and the MTF of Fourier transform lens is better than 0.57 at 55 lp/mm. The RMS value of lens surface shape of 4f optical

收稿日期: 2022-01-04; 收到修改稿日期: 2022-04-14 基金项目: 国家自然科学基金资助项目 (61801455) *通信作者: 张星祥, jan_zxx@163.com。 版权所有©2022 中国科学院光电技术研究所

mechanical system under normal temperature 1*g* gravity condition is less than λ /50. The fundamental frequency of the overall structure is greater than 100 Hz. The overall size of 4f optical processor is 405 mm×145 mm×92 mm, the mass is about 2.94 kg, and its volume and mass are only 30% and 48% of those of oblique plane optical processors with the same SAR data processing level. Through data simulation, it shows that the system design meets the needs of real-time imaging on satellite or airborne.

Keywords: synthetic aperture radar; real-time imaging processing; compact design; modular design

1 引 言

合成孔径雷达 (Synthetic aperture radar, SAR) 是 一种不受天时、气候制约的微波遥感成像技术。随着 分辨率、带宽、通道数量等需求的不断提升, SAR 成像处理器对海量回波数据的实时处理需求也日益迫 切^[1]。而光学处理器具备功耗低、体积小、处理速度 快、可编程等优点,这些优点吸引愈来愈多的学者进 行 SAR 实时成像光学处理器的相关研究工作。

目前国外的 SAR 实时成像研究并未集中在光学 处理器,而是针对深度学习^[2]、便携式^[3]以及光学融 合 SAR 图像^[4]进行后处理等方面进行研究。而国外 最近公开的关于光学处理器的研究成果是加拿大国家 光学实验室 (NOI) 成功研制的一种星载实时成像 的 SAR 斜平面光学处理器系统^[5-6]。该系统利用了 空间光调制器 (spatial light modulator, SLM) 作输 入面,其尺寸为 630 mm×207 mm×140 mm,质量为 6.1 kg,但是无法进行运动补偿等操作,且分辨力只 有 30 m。

而国内的研究成果主要包括:上海交通大学的刘 兴钊、王开志等^[7,8] 基于 4f 光学系统并利用 SLM、数 字微镜器件 (digital micromirror device, DMD) 等器 件设计了多种基于光电协同的 SAR 实时信号处理方 案;中国科学院长春光学精密机械与物理研究所的蔡 志鹏^[9] 对斜平面处理器的光学系统进一步研究,将系 统总长优化至 700 mm 左右,满足了星载或机载 SAR 的使用;而王夺^[10]等人则基于 4f 处理器设计了 距离向、方位向二维 SAR 数据匹配滤波处理器的理 论模型,提高了图像处理分辨率。

综上所述,国外研究进度较为缓慢,而国内学者 提出的方案虽然优化了成像算法、提高了分辨率,但 是在功耗、体积、处理速度及稳定性等方面没有得 到很好的研究,仍未建立完善的光学处理器光机系统 模型。

本文基于 4f 光学结构对 SAR 光学处理器进行了 光机系统设计和分析。首先利用 SLM 作为输入面和 滤波面,推导滤波算法,并计算傅里叶变换透镜的初 始参数,进而对其和 4f 光学系统进行设计和分析; 然后采取集成优化方法设计优化 4f 透镜组结构,同 时利用模块化思想设计处理器整体光机结构,最后针 对设计结果进行详细的说明分析。

2 SAR 光学处理器工作原理

2.1 处理器工作原理

本文提出的 SAR 光学处理器是基于 4f 系统设计 而成,4f 系统是应用最为广泛的傅里叶光学空间滤波 系统^[11],如图 1 所示 s 是激光光源,L 是准直透镜, P 是输入面,P1 是滤波面也称为频谱面,P2 是输出 面,L1、L2 分别是第一、第二傅里叶变换透镜。

结合具体设计需求,光处理器工作原理示意图如 图 2 所示,本文设计的 SAR 光学处理器系统工作时,

Fig. 1 Schematic diagram of 4f system

图 2 SAR 光处理器工作原理示意图 Fig. 2 Schematic diagram of SAR optical processor

首先得到经过准直扩束处理后的平行激光,之后通 过 SLM1 加载带有回波信息的 SAR 信号表达式,将 其调制到平行激光中。调制后的激光进行第一次傅里 叶变换,并在 SLM2 上加载相位匹配滤波函数表达式, 即完成对回波数据的距离徙动校正。之后再进行第二 次傅里叶变换即傅里叶逆变换加图像倒转,得到滤波 校正后的信息图像被 CCD 相机所接收,完成对 SAR 回波信息的聚焦成像实时处理。

2.2 SLM 滤波算法推导

根据 SAR 的成像原理,其点目标的回波信号表达式为^[10]

$$s_{0}(\tau,\eta) = A_{0}\omega_{r}\left(\tau - \frac{2R(\eta)}{c}\right)\omega_{a}(\eta - \eta_{c})$$

$$\times \exp\left\{-i4\pi\frac{R_{0}}{\lambda}\right\} \times \exp\left\{-i\pi K_{a}\eta^{2}\right\}$$

$$\times \exp\left\{i\pi K_{r}\left(\tau - \frac{2R(\eta)}{c}\right)^{2}\right\},$$
(1)

其中: A_0 表示回波信号的振幅常数, λ 表示激光器波 长, ω_r 、 ω_a 分别表示距离向包络函数、方位向包络函 数, τ 、 η 分别表示距离向时间、方位向时间,c是光 速, η_c 表示 SAR 正对检测目标时的方位向时间, K_r 、 K_a 分别表示距离向、方位向调频斜率, R_0 表示 SAR 与检测目标间的最短距离, $R(\eta)$ 则表示 SAR 与检测 目标的瞬时距离, $mR(\eta)$ 又可以用下列公式近似 表示:

$$R(\eta) = \sqrt{R_0^2 + V_r^2 \eta^2} \approx R_0 + \frac{V_r^2 \eta^2}{2R_0} , \qquad (2)$$

其中: V_r表示 SAR 平台的速度。并且方位向调频斜

率 K_a 是 R_0 的函数,满足下列表达式:

$$K_{\rm a} = \frac{2V_{\rm r}^2}{\lambda R_0}.$$
 (3)

式 (1) 即为由 SLM1 加载到平行激光的回波信号 表达式,再经过 L1 的二维傅里叶变换后,其二维频 域上的信号表达式表示为

$$S_{2df}(f_{\tau}, f_{\eta}) = W_{r}(f_{\tau}) W_{a}(f_{\eta} - f_{\eta c})$$
$$\times \exp\{i\theta_{2df}(f_{\tau}, f_{\eta})\}, \qquad (4)$$

其中:
$$\theta_{2df}(f_{\tau}, f_{\eta})$$
表示为

$$\theta_{2df}(f_{\tau}, f_{\eta}) = \frac{\pi c R_0 (f_0 - f_{\tau})}{2 V_r^2 f_0^2} f_{\eta}^2 - \frac{\pi f_{\tau}^2}{K_r} - \frac{4\pi (f_0 + f_{\tau}) R_0}{c} \\ \approx \frac{\pi f_{\eta}^2}{K_a'} - \frac{\pi f_{\tau}^2}{K_r} - \frac{4\pi (f_0 + f_{\tau}) R_0}{c} , \qquad (5)$$

其中: f_r 、 f_η 分别表示距离向和方位向频率在二维频 域上的表达形式, f_r 表示 SAR 正对检测目标时的方 位向时间在二维频域上的表达形式, W_r 、 W_a 分别表 示距离向和方位向的包络函数在二维频域上的表达形 式, f_0 表示载波频率。当 $f_0 \gg f_r$ 时,对于二维频域上 的方位向调频斜率 K'_a 有下列等式成立:

$$K'_{\rm a} = \frac{2V_{\rm r}^2(f_0 + f_{\tau})}{cR_0} \,. \tag{6}$$

由上述公式可得二维频域滤波器表达式为

$$H(f_{\tau}, f_{\eta}) = \exp\left(-\frac{\pi f_{\eta}^{2}}{K_{a}'} + \frac{\pi f_{\tau}^{2}}{K_{r}}\right).$$
(7)

通过 SLM2 加载二维频域滤波器表达式,完成相 位匹配滤波即距离徙动校正,再经过 L2 的二维傅里 叶逆变换,得到载入 CCD 的聚焦图像,最终完成

https://doi.org/10.12086/oee.2022.210421

SAR 回波数据的成像处理过程。

3 光学系统设计

3.1 初始参数计算

根据 4f 光学结构的 SAR 光学处理器的工作原理 可知, SLM 主要作为光学系统中的输入面和滤波面, 而完成对 SAR 数据二维傅里叶变换的则是傅里叶 变换透镜,因此首先需要对其进行合理设计。

本文选择液晶硅反射式 SLM 作为光学系统的输入面,其具体参数如表 1 所示。

根据 SLM 参数,可确定傅里叶变换透镜的设计 指标:

$$D_1 = \sqrt{17.6^2 + 10.7^2} \approx 21 \text{ mm},$$
 (8)

2) 透镜的半视场角ω则满足下列公式:

 $\omega \ge \arcsin \theta = \arcsin \left(\lambda / \delta_{\text{SLM}} \right) \,. \tag{9}$

该式表示入射光角度需大于等于 SLM 一级衍射 角, SLM 才能正常工作。其中 θ 表示 SLM 的一级衍 射角, δ_{SLM} 表示 SLM 的像素大小,这里的 $\lambda = 532$ nm, 代入参数后算得 $\theta \approx 3.3^{\circ}$,向上取值 $\omega = 3.5^{\circ}$ 。

3) 由于透镜需要满足正弦条件,则其焦距 ƒ 满足

以下公式:

$$D_2 = 2\sin\omega f,\tag{10}$$

式中: D_2 表示频谱面即滤波 SLM 的对角线长度, NA 表示透镜的数值孔径。将 $D_2 = 21 \text{ mm}$ 、 $\omega = 3.5$ °代 入得焦距f = 172 mm。

$$N_{\rm max} = 1/2\delta_{\rm SLM},\tag{11}$$

代入参数δ_{SLM}=9.2 μm 后,截止频率 N_{max} =54.3 lp/mm。

5) 透镜要对两对共轭面校正像差,除畸变外,其 余像差应达到衍射极限,并满足瑞利判据^[12]。

综上所述,满足以上设计指标,可以使设计的傅 里叶变换透镜保证准确的傅里叶变换关系,获得高精 度的输入面频谱信息。

3.2 具体设计及分析

本文设计拟采用两组对称的反远距透镜组的结构 形式,作为傅里叶变换透镜的初始结构,经过 ZEMAX 光学设计软件多次优化,确定的傅里叶变换 透镜光学参数如表 2 所示,其结构图和像质评价图如 图 3 所示。

如图 3 所示,经过优化后傅里叶变换透镜的各视

表 1 SLM 规格参数 Table 1 SLM specifications

规格参数	具体数值
调制类型	纯相位型/纯振幅型
像素数	1920×1152
像素大小	9.2 µm
有效像面大小	17.6 mm×10.7 mm
工作波长范围	400 nm~1650 nm
填充因子	95.7%
帧频	76.8/93.7/169/211.1 Hz

表2 傅里叶变换透镜光学参数

Table 2 Optical parameters of Fourier transform lens

			-		
#	光学元件	半径/ mm	厚度/mm	材料	半口径/mm
1	透镜1	-171.909	15.748		16.932
2		-74.994	14.257	SILICA	17.984
3	透镜2	-28.628	5.682	N-KZFS11	17.919
4		-31.483	35.986		19.444
5	透镜3	31.483	5.682		19.623
6		28.628	14.257	N-KZFS11	18.098
7	透镜4	74.994	15.748	011.10.4	18.245
8		171.909	126.3	SILICA	17.258

由于傅里叶变换透镜总轴长度为 352 mm 左右, 当成对使用时系统总轴长度会进一步增加。为此需要 https://doi.org/10.12086/oee.2022.210421

紧凑化改进,折叠光路的方法如下:

1) 引入分光棱镜减少整体光路长度;

2)结合傅里叶变换透镜全对称的特点,在其中间 位置加入平面反射镜,进一步折叠光路。

4f系统中加入的半波片和分光棱镜有效孔径均为 25.4 mm,具体结构如图 4 所示,改进后系统总长为 461 mm 左右,各视场 MTF 仍趋于衍射极限,满

Fig. 4 Optical system structure diagram and image quality evaluation diagram. (a) Structure chart; (b) MTF chart

足 4f 光学系统的成像需求。

4 光机结构设计

本文对 4f 光学结构的 SAR 实时成像光学处理器 进行光机结构设计,设计目标包括以下两点:

1) 处理器结构的准确性、稳定性。为保证 SAR 数据聚焦成像算法的高精度实现,该4f 光学系统对 光学元件的间隔排布、面形稳定性要求相对较高。具 体指标包括:常温 *X、Y、Z* 三向 1g 重力工况下,透 镜面形 RMS 值小于 λ/50;整体结构基频即一阶模态 固有频率大于 100 Hz。

2) 处理器结构的轻量化、小型化。整体结构尺寸 和质量要优于同等 SAR 数据处理水平的斜平面光学 处理器,其设备经过轻小化后有利于满足星载或机载 的搭载应用场景。具体指标包括:整体结构尺寸小于 630 mm×207 mm×140 mm,质量小于 6.1 kg。

4.1 材料的选取

目前常用的光机结构材料有钛合金 (TC4)、铝合金 (7A09)、碳纤维 (CFRP)等,其材料性能参数如表3所示。为了满足设计参数,与镜片的材料包括 BK7、石英玻璃等材质相适应^[13],结构材料需要满足 高比刚度、热稳定性良好、密度小等特点,综合考虑 选取钛合金作为结构材料。

4.2 镜组结构设计

傅里叶变换镜组包括前 2f 镜组和后 2f 镜组,如 图 5 所示。由于两个镜组内部结构基本一致,且前 2f 镜组相对来说结构更复杂,故选取其进行分析说明。 镜组拟采用定心车工艺以及模块化设计,各个镜片固 定在各自的镜座中,并且对镜座进行柔性化设计,有 效保证镜组的径向精度;利用镜筒凸台和两端压圈压 紧镜座,则保证镜组的轴向精度。

Table 3 Properties of common opto-mechanical structural materials						
材料名称	密度 $ ho$ /(g/cm³)	弹性模量 <i>E</i> /(GPa)	比刚度(<i>E</i> / <i>ρ</i>)/(GN·(m/g))	线胀系数α/(10 ⁻⁶ /K)	导热系数 <i>λ/</i> (W/(m·K))	
TC4	4.4	114	25.9	9.10	7.40	
7A09	2.8	71	25.4	23.6	142.00	
铟钢	8.9	141	15.8	2.60	13.70	
CFRP	1.8	纵向95	52.8	0~1	70.00	
高体分SiC/Al	3.0	180	60.0	8.0	225.00	

表3 常用光机结构材料属性表

图 5 傅里叶变换镜组结构图。(a) 前 2f 镜组; (b) 后 2f 镜组 Fig. 5 Structure of Fourier transform. (a) 2f lens group in the front; (b) 2f lens group in the back

经过对三点三狭缝式、三点六狭缝式、六点六狭 缝式、多弹片支撑式、三铰链支撑式等结构的对比, 从柔性、加工难度、稳定性等因素考虑^[14],镜座采用 了三点六狭缝式设计。该结构三点位置处支撑脚与镜 面相切,接触应力较小;狭缝末端圆孔结构可释放应 力。柔性镜座结构示意如图 6 所示。

如图 6 所示,参数 a 表示狭缝圆弧弧度,参数 b 表示支撑脚宽度,参数 c 和 d 分别表示狭缝宽度、狭 缝间壁厚,参数 r 则是狭缝末端圆孔半径。考虑实际 加工难度等因素以及张刘等的设计经验^[15],令参数 c=0.5 mm、d=0.8 mm,将狭缝圆弧弧度 a、支撑脚宽 度 b 和狭缝末端圆孔半径 r 作为自变量,将常温 X、 Y、Z 三向 1g 重力工况下的透镜面形 RMS 值作为目 标函数,将结构一阶模态作为约束函数。对镜座进行 如下数学模型的参数集成优化^[16]:

Min
$$Mass = g(a, b, r);$$

S.t. $X_{RMS} \le \lambda/50,$
 $Y_{RMS} \le \lambda/50,$
 $Z_{RMS} \le \lambda/50,$
 $60 < a < 120,$
 $1 < b < 14,$
 $0.25 < r < 1.05.$ (12)

优化后柔性镜座参数为: a=102.2°, b=8 mm, r=0.8 mm。利用 NX Nastran 对前 2f 镜组进行仿真分 析,其在常温 X、Y、Z三向 1g 重力工况下的透镜面 形变形云图如图 7 所示。从图上可以看出镜片在常 温 X、Y、Z三向 1g 重力工况下面形最大位移量分别 为 9.3 nm、8.8 nm、9.0 nm,完全满足面形 RMS $\leq \lambda/50$ 的指标要求。

4.3 处理器整体结构设计

4f 光学处理器整体结构具体包括前 2f 镜组、后 2f 镜组、分束棱镜组件、滤波板组件、镜筒支撑架、 底板等子组件,如图 8 所示。子组件通过螺钉和支撑 架直接与底板相连接,底板上设计有凸台,便于装调, 而且整体结构简单、布局紧凑。同时模块化的结构降 低了设计、装调成本,便于实现处理器的设备量产化。

在利用 UG 完成三维建模后,经过测量得到设计 后的 4f 处理器整体尺寸为405 mm×145 mm×92 mm, 质量约为 2.94 kg。相比于同等 SAR 数据处理水平的 斜平面光学处理器,体积、质量分别仅是其 30%、 48%,完全满足星载或机载的搭载需求。

利用 NX Nastran 对 4f 光学处理器整体结构进行 模态分析,其前两阶模态云图如图 9 所示。其中系统 整体一阶、二阶模态频率分别为 403 Hz、479 Hz,从 振型上看,其后 2f 镜组部分为 Z 向振型。通过仿真 分析,系统基频即一阶模态频率大于周围环境存在的 扰动频率 0 Hz~100 Hz,满足设计指标。

Fig. 6 Structural diagram of flexible lens base

https://doi.org/10.12086/oee.2022.210421

Fig. 7 Cloud diagram of front 2f lens group deformation. (a) X direction; (b) Y direction; (c) Z direction

图 8 4f 光学处理器的系统结构图 Fig. 8 System structure of 4f optical processor

https://doi.org/10.12086/oee.2022.210421

图 9 整体结构前两阶模态云图。(a) 一阶模态云图; (b) 二阶模态云图 Fig. 9 First two modal cloud images of the whole structure. (a) First modal cloud image; (b) Second modal cloud image

5 模拟结果

由于光学处理器的滤波算法较为复杂,导致 Zemax 软件难以准确表达 SLM 在处理过程发挥的光 学调制特性。因此,为了验证 SAR 数据的处理效果, 在实验室的光学平台上利用简易的光学元件如分光棱 镜、单透镜等搭建了 4f 光路系统,并在 SLM 上加载 了相位匹配滤波算法进行了模拟处理。其装置和模拟 的结果图如图 10 所示。

图 10 4f 系统装置图和模拟结果图。 (a) 装置图; (b) 模拟结果图 Fig. 10 4f system device diagram and simulation result diagram. (a) Device diagram; (b) Simulation result diagram

6 结 论

本文基于 4f 光学结构,对 SAR 实时成像光学处 理器进行了光机系统设计和分析。为了满足 SAR 数 据的实时成像处理需求,设计得到了适用 SLM 滤波 算法的 4f 光学系统以及满足常温 1g 重力工况下透镜 面形 RMS 值小于 λ /50、整体结构基频大于 100 Hz 指 标的 4f 光机结构。分析结果表明:入瞳直径 21 mm、 视场角7°、焦距 172 mm 的傅里叶变换透镜和紧凑化 改进后的 4f 光学系统,成像质量趋于衍射极限,满 足 SLM 滤波算法的复现需求;采用模块化设计后的 4f 光学处理器整体尺寸为405 mm×145 mm×92 mm, 质量约为 2.94 kg,其体积、质量分别仅是由 NOI 研 制、同等数据处理水平的斜平面光学处理器的 30%、 48%。通过最后的模拟仿真,表明本文设计的 4f 光学 处理器光机系统对 SAR 光学处理器的应用发展提供 一定的参考价值。

参考文献

- Gini F. Grand challenges in radar signal processing[J]. Front Sign Process, 2021, 1: 664232.
- [2] Bhamidipati S R M, Srivatsa C, Gowda C K S, et al. Generation of SAR images using deep learning[J]. SN Comput Sci, 2020, 1 (6): 355.
- [3] Liu F, Huang P P, Tan W X, et al. Portable Omni-directional micro deformation monitoring radar system[C]//2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Suzhou: IEEE, 2020: 1–3.
- [4] Kulkarni S C, Rege P P. Pixel level fusion techniques for SAR

https://doi.org/10.12086/oee.2022.210421

and optical images: a review[J]. Inf Fusion, 2020, 59: 13-29.

- [5] Marchese L, Doucet M, Harnisch B, et al. A real-time highresolution optical SAR processor[J]. *Proc SPIE*, 2010, 7669: 76690M.
- [6] Marchese L, Bourqui P, Turgeon S, et al. Extended capability overview of real-time optronic SAR processing[J]. *IET Int Conf Radar Syst*, 2012, 8(11): 5052–5067.
- [7] Jin Y R, Guo R, Gao Y S, et al. A tiling of multi-SLM is used in full resolution optical SAR data processor[C]//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE, 2014: 588–591.
- [8] Zhang J, Gao Y S, Wang K Z, et al. An optical SAR data processor based on DMD[C]//2016 Progress in Electromagnetic Research Symposium (PIERS). Shanghai: IEEE, 2016: 2893–2897.
- [9] Cai Z P, Zhang X X, Chen Z, et al. New SAR real-time imaging optical system design[J]. *Chin J Liquid Cryst Displays*, 2020, **35** (11): 1185-1194. 蔡志鹏, 张星祥, 陈哲, 等. 新型SAR实时成像光学系统设计[J]. 液

晶与显示, 2020, **35**(11): 1185-1194. [10] Wang D, Ouyang R, Wang K Z, et al. Optical SAR data

- processing configuration with simultaneous azimuth and range matching filtering[J]. *Appl Opt*, 2020, **59**(33): 10441–10450.
- [11] You M J. Fourier Optics[M]. 2nd ed. Beijing: Ordnance Industry Press, 2000.

作者简介

赵洪强 (1996-),男,硕士研究生,主要从事光 学仪器光机结构设计方面的研究,

E-mail: zhqallen@163.com

游明俊. 傅里叶光学[M]. 2版. 北京: 兵器工业出版社, 2000.

- [12] Liu H S, Wang Z, Hu Q, et al. Tomography technology based on spatial light modulator[J]. *Chin Opt*, 2019, **12**(6): 1338–1347. 刘洪顺, 王喆, 胡琪, 等. 基于空间光调制器的层析成像技术[J]. 中国光学, 2019, **12**(6): 1338–1347.
- [13] Wei J L, Qu H D, Wang Y X, et al. Structure optimization design of large field of view optical lens for the space TOF camera[J]. *Chin J Sci Instr*, 2020, **41**(10): 121-128. 魏加立, 曲慧东, 王永宪, 等. 空间TOF相机大视场光学镜头结构 优化设计[J]. 仪器仪表学报, 2020, **41**(10): 121-128.
- [14] Yang Y L. Design and test of low-temperature infrared lens flexible unloading structure[D]. Langfang: North China Institute of Aerospace Technology, 2021. 杨云良. 低温红外镜头柔性卸载结构设计与测试[D]. 廊坊: 北华 航天工业学院, 2021.
- [15] Zhang L, Zheng X Y, Zhang F, et al. Structural optimization design of large tolerance and multi-flexibility lens subassembly [J]. J Jilin Univ (Eng Technol Ed), 2021, 51(2): 478-485. 张刘, 郑潇逸, 张帆, 等. 大容差多柔性透镜组结构优化设计[J]. 吉林大学学报 (工学版), 2021, 51(2): 478-485.
- [16] Li L, Xing K M, Zhao M. Ultra-lightweight structure design of primary mirror of receiving telescope of space-borne Lidar[J]. J Luoyang Inst Sci Technol (Nat Sci Ed), 2021, 31(3): 73-79. 李路, 邢昆明, 赵明. 星载激光雷达望远镜主镜超轻量化结构设 计[J]. 洛阳理工学院学报 (自然科学版), 2021, 31(3): 73-79.

【通信作者】张星祥(1977-),男,博士,研究员,主要从事空间宽幅成像技术、精密装调与 拼接技术、在轨测试与处理技术方面的研究。 E-mail: jan zxx@163.com

Optical-mechanical system design of SAR real-time imaging optical processor

Zhao Hongqiang^{1,2}, Zhang Xingxiang^{1*}, Wang Duo¹, Bi Guoling¹, Fu Tianjiao¹

System structure of 4f optical processor

Overview: This paper is devoted to the research of synthetic aperture radar (SAR) real-time imaging processor. As the number of SAR imaging channels increases, the number of SAR imaging channels also presents new challenges. The optical processor not only has strong parallel processing ability, but also has the advantages of low power consumption, small volume, fast processing speed and programmability. Therefore, this paper designs and analyzes the SAR real-time imaging optical processor from the perspective of optical mechanical system design. Firstly, the system scheme principle of optical processor based on 4f optical structure is proposed, and the filtering algorithm is described in detail according to the principle. Secondly, according to the algorithm requirements, the relevant Fourier transform lens design is completed, and the compactness of 4f optical system is further strengthened. Then, the flexible design of the lens base is carried out, and the optimal parameter model is found by using the integrated optimization method. At the same time, it meets the modular design idea, completes the corresponding optical mechanical structure design, and obtains the optical mechanical system model of the overall scheme. The specific design results obtained based on the above research methods are as follows: in the optical design process, a Fourier transform lens with an entry pupil diameter of 21 mm, a field angle of 7°, and a focal length of 172 mm is obtained, and its MTF is better than 0.57 at 55 lp/mm. And the 4f optical system whose imaging quality tends to the diffraction limit meets the Rayleigh criterion. In the process of optical mechanical structure design, the overall size of 4f optical mechanical system is 405 mm×145 mm× 92 mm, with a mass of about 2.94 kg, and its volume and mass are only 30% and 48% of that of the inclined plane optical processor with the same SAR data processing level; At the same time, the RMS value of lens surface under normal temperature 1g gravity condition is less than $\lambda/50(\lambda = 532 \text{ nm})$, the fundamental frequency of the overall structure is greater than 100 Hz, which can fully meet the expected design goal of the processor optical mechanical system. Finally, the simulation processing of SAR data is carried out on the optical platform. According to the simulation results, it shows that the system can be suitable for airborne or spaceborne real-time processing scenes. To sum up, the 4f optical processor designed in this paper can provide a certain reference value for improving the real-time imaging processing ability of SAR.

Zhao H Q, Zhang X X, Wang D, et al. Optical-mechanical system design of SAR real-time imaging optical processor[J]. *Opto-Electron Eng*, 2022, **49**(9): 210421; DOI: 10.12086/oee.2022.210421

Foundation item: National Natural Science Foundation of China (61801455)

¹Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; ²University of Chinese Academy of Sciences, Beijing 100049, China

^{*} E-mail: jan_zxx@163.com